Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Self-Supervised Video Object Segmentation by Motion-Aware Mask Propagation (2107.12569v2)

Published 27 Jul 2021 in cs.CV

Abstract: We propose a self-supervised spatio-temporal matching method, coined Motion-Aware Mask Propagation (MAMP), for video object segmentation. MAMP leverages the frame reconstruction task for training without the need for annotations. During inference, MAMP extracts high-resolution features from each frame to build a memory bank from the features as well as the predicted masks of selected past frames. MAMP then propagates the masks from the memory bank to subsequent frames according to our proposed motion-aware spatio-temporal matching module to handle fast motion and long-term matching scenarios. Evaluation on DAVIS-2017 and YouTube-VOS datasets show that MAMP achieves state-of-the-art performance with stronger generalization ability compared to existing self-supervised methods, i.e., 4.2% higher mean J&F on DAVIS-2017 and 4.85% higher mean J&F on the unseen categories of YouTube-VOS than the nearest competitor. Moreover, MAMP performs at par with many supervised video object segmentation methods. Our code is available at: https://github.com/bo-miao/MAMP.

Citations (18)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com