Papers
Topics
Authors
Recent
2000 character limit reached

High-Dimensional Distribution Generation Through Deep Neural Networks (2107.12466v3)

Published 26 Jul 2021 in cs.LG

Abstract: We show that every $d$-dimensional probability distribution of bounded support can be generated through deep ReLU networks out of a $1$-dimensional uniform input distribution. What is more, this is possible without incurring a cost - in terms of approximation error measured in Wasserstein-distance - relative to generating the $d$-dimensional target distribution from $d$ independent random variables. This is enabled by a vast generalization of the space-filling approach discovered in (Bailey & Telgarsky, 2018). The construction we propose elicits the importance of network depth in driving the Wasserstein distance between the target distribution and its neural network approximation to zero. Finally, we find that, for histogram target distributions, the number of bits needed to encode the corresponding generative network equals the fundamental limit for encoding probability distributions as dictated by quantization theory.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.