Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Multiple-Instance Learning Approach for the Assessment of Gallbladder Vascularity from Laparoscopic Images (2107.12093v2)

Published 26 Jul 2021 in cs.CV

Abstract: An important task at the onset of a laparoscopic cholecystectomy (LC) operation is the inspection of gallbladder (GB) to evaluate the thickness of its wall, presence of inflammation and extent of fat. Difficulty in visualization of the GB wall vessels may be due to the previous factors, potentially as a result of chronic inflammation or other diseases. In this paper we propose a multiple-instance learning (MIL) technique for assessment of the GB wall vascularity via computer-vision analysis of images from LC operations. The bags correspond to a labeled (low vs. high) vascularity dataset of 181 GB images, from 53 operations. The instances correspond to unlabeled patches extracted from these images. Each patch is represented by a vector with color, texture and statistical features. We compare various state-of-the-art MIL and single-instance learning approaches, as well as a proposed MIL technique based on variational Bayesian inference. The methods were compared for two experimental tasks: image-based and video-based (i.e. patient-based) classification. The proposed approach presents the best performance with accuracy 92.1% and 90.3% for the first and second task, respectively. A significant advantage of the proposed technique is that it does not require the time-consuming task of manual labelling the instances.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.