Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Facetron: A Multi-speaker Face-to-Speech Model based on Cross-modal Latent Representations (2107.12003v3)

Published 26 Jul 2021 in cs.CV, cs.LG, cs.SD, and eess.AS

Abstract: In this paper, we propose a multi-speaker face-to-speech waveform generation model that also works for unseen speaker conditions. Using a generative adversarial network (GAN) with linguistic and speaker characteristic features as auxiliary conditions, our method directly converts face images into speech waveforms under an end-to-end training framework. The linguistic features are extracted from lip movements using a lip-reading model, and the speaker characteristic features are predicted from face images using cross-modal learning with a pre-trained acoustic model. Since these two features are uncorrelated and controlled independently, we can flexibly synthesize speech waveforms whose speaker characteristics vary depending on the input face images. We show the superiority of our proposed model over conventional methods in terms of objective and subjective evaluation results. Specifically, we evaluate the performances of linguistic features by measuring their accuracy on an automatic speech recognition task. In addition, we estimate speaker and gender similarity for multi-speaker and unseen conditions, respectively. We also evaluate the aturalness of the synthesized speech waveforms using a mean opinion score (MOS) test and non-intrusive objective speech quality assessment (NISQA).The demo samples of the proposed and other models are available at https://sam-0927.github.io/

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube