Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Joint and Domain-Adaptive Approach to Spoken Language Understanding (2107.11768v1)

Published 25 Jul 2021 in cs.CL and cs.AI

Abstract: Spoken Language Understanding (SLU) is composed of two subtasks: intent detection (ID) and slot filling (SF). There are two lines of research on SLU. One jointly tackles these two subtasks to improve their prediction accuracy, and the other focuses on the domain-adaptation ability of one of the subtasks. In this paper, we attempt to bridge these two lines of research and propose a joint and domain adaptive approach to SLU. We formulate SLU as a constrained generation task and utilize a dynamic vocabulary based on domain-specific ontology. We conduct experiments on the ASMixed and MTOD datasets and achieve competitive performance with previous state-of-the-art joint models. Besides, results show that our joint model can be effectively adapted to a new domain.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.