Papers
Topics
Authors
Recent
2000 character limit reached

DR2L: Surfacing Corner Cases to Robustify Autonomous Driving via Domain Randomization Reinforcement Learning (2107.11762v1)

Published 25 Jul 2021 in cs.RO, cs.AI, and cs.LG

Abstract: How to explore corner cases as efficiently and thoroughly as possible has long been one of the top concerns in the context of deep reinforcement learning (DeepRL) autonomous driving. Training with simulated data is less costly and dangerous than utilizing real-world data, but the inconsistency of parameter distribution and the incorrect system modeling in simulators always lead to an inevitable Sim2real gap, which probably accounts for the underperformance in novel, anomalous and risky cases that simulators can hardly generate. Domain Randomization(DR) is a methodology that can bridge this gap with little or no real-world data. Consequently, in this research, an adversarial model is put forward to robustify DeepRL-based autonomous vehicles trained in simulation to gradually surfacing harder events, so that the models could readily transfer to the real world.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.