Papers
Topics
Authors
Recent
2000 character limit reached

Adversarial training may be a double-edged sword (2107.11671v1)

Published 24 Jul 2021 in cs.LG, cs.CR, and cs.CV

Abstract: Adversarial training has been shown as an effective approach to improve the robustness of image classifiers against white-box attacks. However, its effectiveness against black-box attacks is more nuanced. In this work, we demonstrate that some geometric consequences of adversarial training on the decision boundary of deep networks give an edge to certain types of black-box attacks. In particular, we define a metric called robustness gain to show that while adversarial training is an effective method to dramatically improve the robustness in white-box scenarios, it may not provide such a good robustness gain against the more realistic decision-based black-box attacks. Moreover, we show that even the minimal perturbation white-box attacks can converge faster against adversarially-trained neural networks compared to the regular ones.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.