Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 45 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Clinical Utility of the Automatic Phenotype Annotation in Unstructured Clinical Notes: ICU Use Cases (2107.11665v2)

Published 24 Jul 2021 in cs.CL

Abstract: Objective: Clinical notes contain information not present elsewhere, including drug response and symptoms, all of which are highly important when predicting key outcomes in acute care patients. We propose the automatic annotation of phenotypes from clinical notes as a method to capture essential information, which is complementary to typically used vital signs and laboratory test results, to predict outcomes in the Intensive Care Unit (ICU). Methods: We develop a novel phenotype annotation model to annotate phenotypic features of patients which are then used as input features of predictive models to predict ICU patient outcomes. We demonstrate and validate our approach conducting experiments on three ICU prediction tasks including in-hospital mortality, physiological decompensation and length of stay for over 24,000 patients by using MIMIC-III dataset. Results: The predictive models incorporating phenotypic information achieve 0.845 (AUC-ROC) to predict in-hospital mortality, 0.839 (AUC-ROC) for physiological decompensation and 0.430 (Kappa) for length of stay, all of which consistently outperform the baseline models leveraging only vital signs and laboratory test results. Moreover, we conduct a thorough interpretability study, showing that phenotypes provide valuable insights at the patient and cohort levels. Conclusion: The proposed approach demonstrates phenotypic information complements traditionally used vital signs and laboratory test results, improving significantly forecast of outcomes in the ICU.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.