Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Negation Handling in Machine Learning-Based Sentiment Classification for Colloquial Arabic (2107.11597v1)

Published 24 Jul 2021 in cs.CL

Abstract: One crucial aspect of sentiment analysis is negation handling, where the occurrence of negation can flip the sentiment of a sentence and negatively affects the machine learning-based sentiment classification. The role of negation in Arabic sentiment analysis has been explored only to a limited extent, especially for colloquial Arabic. In this paper, the author addresses the negation problem of machine learning-based sentiment classification for a colloquial Arabic language. To this end, we propose a simple rule-based algorithm for handling the problem; the rules were crafted based on observing many cases of negation. Additionally, simple linguistic knowledge and sentiment lexicon are used for this purpose. The author also examines the impact of the proposed algorithm on the performance of different machine learning algorithms. The results given by the proposed algorithm are compared with three baseline models. The experimental results show that there is a positive impact on the classifiers accuracy, precision and recall when the proposed algorithm is used compared to the baselines.

Citations (4)

Summary

We haven't generated a summary for this paper yet.