Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Near-Optimal Average-Case Approximate Trace Reconstruction from Few Traces (2107.11530v2)

Published 24 Jul 2021 in cs.DS and cs.DM

Abstract: In the standard trace reconstruction problem, the goal is to \emph{exactly} reconstruct an unknown source string $\mathsf{x} \in {0,1}n$ from independent "traces", which are copies of $\mathsf{x}$ that have been corrupted by a $\delta$-deletion channel which independently deletes each bit of $\mathsf{x}$ with probability $\delta$ and concatenates the surviving bits. We study the \emph{approximate} trace reconstruction problem, in which the goal is only to obtain a high-accuracy approximation of $\mathsf{x}$ rather than an exact reconstruction. We give an efficient algorithm, and a near-matching lower bound, for approximate reconstruction of a random source string $\mathsf{x} \in {0,1}n$ from few traces. Our main algorithmic result is a polynomial-time algorithm with the following property: for any deletion rate $0 < \delta < 1$ (which may depend on $n$), for almost every source string $\mathsf{x} \in {0,1}n$, given any number $M \leq \Theta(1/\delta)$ of traces from $\mathrm{Del}\delta(\mathsf{x})$, the algorithm constructs a hypothesis string $\widehat{\mathsf{x}}$ that has edit distance at most $n \cdot (\delta M){\Omega(M)}$ from $\mathsf{x}$. We also prove a near-matching information-theoretic lower bound showing that given $M \leq \Theta(1/\delta)$ traces from $\mathrm{Del}\delta(\mathsf{x})$ for a random $n$-bit string $\mathsf{x}$, the smallest possible expected edit distance that any algorithm can achieve, regardless of its running time, is $n \cdot (\delta M){O(M)}$.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.