Emergent Mind

Abstract

This paper summarizes the TinyAction challenge which was organized in ActivityNet workshop at CVPR 2021. This challenge focuses on recognizing real-world low-resolution activities present in videos. Action recognition task is currently focused around classifying the actions from high-quality videos where the actors and the action is clearly visible. While various approaches have been shown effective for recognition task in recent works, they often do not deal with videos of lower resolution where the action is happening in a tiny region. However, many real world security videos often have the actual action captured in a small resolution, making action recognition in a tiny region a challenging task. In this work, we propose a benchmark dataset, TinyVIRAT-v2, which is comprised of naturally occuring low-resolution actions. This is an extension of the TinyVIRAT dataset and consists of actions with multiple labels. The videos are extracted from security videos which makes them realistic and more challenging. We use current state-of-the-art action recognition methods on the dataset as a benchmark, and propose the TinyAction Challenge.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.