Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Rethinking Hard-Parameter Sharing in Multi-Domain Learning (2107.11359v3)

Published 23 Jul 2021 in cs.LG

Abstract: Hard parameter sharing in multi-domain learning (MDL) allows domains to share some of the model parameters to reduce storage cost while improving prediction accuracy. One common sharing practice is to share the bottom layers of a deep neural network among domains while using separate top layers for each domain. In this work, we revisit this common practice via an empirical study on image classification tasks from a diverse set of visual domains and make two surprising observations. (1) Using separate bottom-layer parameters could achieve significantly better performance than the common practice and this phenomenon holds with different experimental settings. (2) A multi-domain model with a small proportion of domain-specific parameters from bottom layers can achieve competitive performance with independent models trained on each domain separately. Our observations suggest that people adopt the new strategy of using separate bottom-layer parameters as a stronger baseline for model design in MDL.

Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.