Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Provident Vehicle Detection at Night for Advanced Driver Assistance Systems (2107.11302v3)

Published 23 Jul 2021 in cs.CV and cs.RO

Abstract: In recent years, computer vision algorithms have become more powerful. However, current algorithms mainly share one limitation: They rely on directly visible objects. This is a significant drawback compared to human behavior, where visual cues caused by objects (e.g., shadows) are already used intuitively to retrieve information or anticipate occurring objects. While driving at night, this performance deficit becomes even more obvious: Humans already process the light artifacts caused by the headlamps of oncoming vehicles to estimate where they appear, whereas current object detection systems require that the oncoming vehicle is directly visible before it can be detected. Based on previous work on this subject, in this paper, we present a complete system that can detect light artifacts caused by the headlights of oncoming vehicles so that it detects that a vehicle is approaching providently. For that, an entire algorithm architecture is investigated, including the detection in the image space, the three-dimensional localization, and the tracking of light artifacts. To demonstrate the usefulness of such an algorithm, the proposed algorithm is deployed in a test vehicle to use the detected light artifacts to control the glare-free high beam system proactively. Using this experimental setting, the provident vehicle detection system's time benefit compared to an in-production computer vision system is quantified. Additionally, the glare-free high beam use case provides a real-time and real-world visualization interface of the detection results by considering the adaptive headlamps as projectors. With this investigation of provident vehicle detection, we want to put awareness on the unconventional sensing task of detecting objects providently and further close the performance gap between human behavior and computer vision algorithms to bring autonomous and automated driving a step forward.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.