Papers
Topics
Authors
Recent
2000 character limit reached

Pruning Ternary Quantization

Published 23 Jul 2021 in cs.CV and cs.AI | (2107.10998v5)

Abstract: Inference time, model size, and accuracy are three key factors in deep model compression. Most of the existing work addresses these three key factors separately as it is difficult to optimize them all at the same time. For example, low-bit quantization aims at obtaining a faster model; weight sharing quantization aims at improving compression ratio and accuracy; and mixed-precision quantization aims at balancing accuracy and inference time. To simultaneously optimize bit-width, model size, and accuracy, we propose pruning ternary quantization (PTQ): a simple, effective, symmetric ternary quantization method. We integrate L2 normalization, pruning, and the weight decay term to reduce the weight discrepancy in the gradient estimator during quantization, thus producing highly compressed ternary weights. Our method brings the highest test accuracy and the highest compression ratio. For example, it produces a 939kb (49$\times$) 2bit ternary ResNet-18 model with only 4\% accuracy drop on the ImageNet dataset. It compresses 170MB Mask R-CNN to 5MB (34$\times$) with only 2.8\% average precision drop. Our method is verified on image classification, object detection/segmentation tasks with different network structures such as ResNet-18, ResNet-50, and MobileNetV2.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (5)

Collections

Sign up for free to add this paper to one or more collections.