Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

DeepTitle -- Leveraging BERT to generate Search Engine Optimized Headlines (2107.10935v1)

Published 22 Jul 2021 in cs.LG

Abstract: Automated headline generation for online news articles is not a trivial task - machine generated titles need to be grammatically correct, informative, capture attention and generate search traffic without being "click baits" or "fake news". In this paper we showcase how a pre-trained LLM can be leveraged to create an abstractive news headline generator for German language. We incorporate state of the art fine-tuning techniques for abstractive text summarization, i.e. we use different optimizers for the encoder and decoder where the former is pre-trained and the latter is trained from scratch. We modify the headline generation to incorporate frequently sought keywords relevant for search engine optimization. We conduct experiments on a German news data set and achieve a ROUGE-L-gram F-score of 40.02. Furthermore, we address the limitations of ROUGE for measuring the quality of text summarization by introducing a sentence similarity metric and human evaluation.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.