Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evidential Deep Learning for Open Set Action Recognition (2107.10161v2)

Published 21 Jul 2021 in cs.CV

Abstract: In a real-world scenario, human actions are typically out of the distribution from training data, which requires a model to both recognize the known actions and reject the unknown. Different from image data, video actions are more challenging to be recognized in an open-set setting due to the uncertain temporal dynamics and static bias of human actions. In this paper, we propose a Deep Evidential Action Recognition (DEAR) method to recognize actions in an open testing set. Specifically, we formulate the action recognition problem from the evidential deep learning (EDL) perspective and propose a novel model calibration method to regularize the EDL training. Besides, to mitigate the static bias of video representation, we propose a plug-and-play module to debias the learned representation through contrastive learning. Experimental results show that our DEAR method achieves consistent performance gain on multiple mainstream action recognition models and benchmarks. Code and pre-trained models are available at {\small{\url{https://www.rit.edu/actionlab/dear}}}.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Wentao Bao (19 papers)
  2. Qi Yu (55 papers)
  3. Yu Kong (37 papers)
Citations (123)

Summary

We haven't generated a summary for this paper yet.