Papers
Topics
Authors
Recent
2000 character limit reached

Fine-Grained Causality Extraction From Natural Language Requirements Using Recursive Neural Tensor Networks (2107.09980v2)

Published 21 Jul 2021 in cs.CL and cs.IR

Abstract: [Context:] Causal relations (e.g., If A, then B) are prevalent in functional requirements. For various applications of AI4RE, e.g., the automatic derivation of suitable test cases from requirements, automatically extracting such causal statements are a basic necessity. [Problem:] We lack an approach that is able to extract causal relations from natural language requirements in fine-grained form. Specifically, existing approaches do not consider the combinatorics between causes and effects. They also do not allow to split causes and effects into more granular text fragments (e.g., variable and condition), making the extracted relations unsuitable for automatic test case derivation. [Objective & Contributions:] We address this research gap and make the following contributions: First, we present the Causality Treebank, which is the first corpus of fully labeled binary parse trees representing the composition of 1,571 causal requirements. Second, we propose a fine-grained causality extractor based on Recursive Neural Tensor Networks. Our approach is capable of recovering the composition of causal statements written in natural language and achieves a F1 score of 74 % in the evaluation on the Causality Treebank. Third, we disclose our open data sets as well as our code to foster the discourse on the automatic extraction of causality in the RE community.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.