Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

CausalBERT: Injecting Causal Knowledge Into Pre-trained Models with Minimal Supervision (2107.09852v2)

Published 21 Jul 2021 in cs.CL

Abstract: Recent work has shown success in incorporating pre-trained models like BERT to improve NLP systems. However, existing pre-trained models lack of causal knowledge which prevents today's NLP systems from thinking like humans. In this paper, we investigate the problem of injecting causal knowledge into pre-trained models. There are two fundamental problems: 1) how to collect various granularities of causal pairs from unstructured texts; 2) how to effectively inject causal knowledge into pre-trained models. To address these issues, we extend the idea of CausalBERT from previous studies, and conduct experiments on various datasets to evaluate its effectiveness. In addition, we adopt a regularization-based method to preserve the already learned knowledge with an extra regularization term while injecting causal knowledge. Extensive experiments on 7 datasets, including four causal pair classification tasks, two causal QA tasks and a causal inference task, demonstrate that CausalBERT captures rich causal knowledge and outperforms all pre-trained models-based state-of-the-art methods, achieving a new causal inference benchmark.

Citations (15)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.