Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Modality-aware Mutual Learning for Multi-modal Medical Image Segmentation (2107.09842v1)

Published 21 Jul 2021 in eess.IV and cs.CV

Abstract: Liver cancer is one of the most common cancers worldwide. Due to inconspicuous texture changes of liver tumor, contrast-enhanced computed tomography (CT) imaging is effective for the diagnosis of liver cancer. In this paper, we focus on improving automated liver tumor segmentation by integrating multi-modal CT images. To this end, we propose a novel mutual learning (ML) strategy for effective and robust multi-modal liver tumor segmentation. Different from existing multi-modal methods that fuse information from different modalities by a single model, with ML, an ensemble of modality-specific models learn collaboratively and teach each other to distill both the characteristics and the commonality between high-level representations of different modalities. The proposed ML not only enables the superiority for multi-modal learning but can also handle missing modalities by transferring knowledge from existing modalities to missing ones. Additionally, we present a modality-aware (MA) module, where the modality-specific models are interconnected and calibrated with attention weights for adaptive information exchange. The proposed modality-aware mutual learning (MAML) method achieves promising results for liver tumor segmentation on a large-scale clinical dataset. Moreover, we show the efficacy and robustness of MAML for handling missing modalities on both the liver tumor and public brain tumor (BRATS 2018) datasets. Our code is available at https://github.com/YaoZhang93/MAML.

Citations (78)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube