Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Explainable AI Enabled Inspection of Business Process Prediction Models (2107.09767v1)

Published 16 Jul 2021 in cs.AI and cs.LG

Abstract: Modern data analytics underpinned by machine learning techniques has become a key enabler to the automation of data-led decision making. As an important branch of state-of-the-art data analytics, business process predictions are also faced with a challenge in regard to the lack of explanation to the reasoning and decision by the underlying `black-box' prediction models. With the development of interpretable machine learning techniques, explanations can be generated for a black-box model, making it possible for (human) users to access the reasoning behind machine learned predictions. In this paper, we aim to present an approach that allows us to use model explanations to investigate certain reasoning applied by machine learned predictions and detect potential issues with the underlying methods thus enhancing trust in business process prediction models. A novel contribution of our approach is the proposal of model inspection that leverages both the explanations generated by interpretable machine learning mechanisms and the contextual or domain knowledge extracted from event logs that record historical process execution. Findings drawn from this work are expected to serve as a key input to developing model reliability metrics and evaluation in the context of business process predictions.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.