Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Establishing process-structure linkages using Generative Adversarial Networks (2107.09402v1)

Published 20 Jul 2021 in cond-mat.mtrl-sci and cs.LG

Abstract: The microstructure of material strongly influences its mechanical properties and the microstructure itself is influenced by the processing conditions. Thus, establishing a Process-Structure-Property relationship is a crucial task in material design and is of interest in many engineering applications. We develop a GAN (Generative Adversarial Network) to synthesize microstructures based on given processing conditions. This approach is devoid of feature engineering, needs little domain awareness, and can be applied to a wide variety of material systems. Results show that our GAN model can produce high-fidelity multi-phase microstructures which have a good correlation with the given processing conditions.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.