Papers
Topics
Authors
Recent
Search
2000 character limit reached

Boosting Few-Shot Classification with View-Learnable Contrastive Learning

Published 20 Jul 2021 in cs.CV | (2107.09242v2)

Abstract: The goal of few-shot classification is to classify new categories with few labeled examples within each class. Nowadays, the excellent performance in handling few-shot classification problems is shown by metric-based meta-learning methods. However, it is very hard for previous methods to discriminate the fine-grained sub-categories in the embedding space without fine-grained labels. This may lead to unsatisfactory generalization to fine-grained subcategories, and thus affects model interpretation. To tackle this problem, we introduce the contrastive loss into few-shot classification for learning latent fine-grained structure in the embedding space. Furthermore, to overcome the drawbacks of random image transformation used in current contrastive learning in producing noisy and inaccurate image pairs (i.e., views), we develop a learning-to-learn algorithm to automatically generate different views of the same image. Extensive experiments on standard few-shot learning benchmarks demonstrate the superiority of our method.

Citations (23)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.