Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Attention-Guided NIR Image Colorization via Adaptive Fusion of Semantic and Texture Clues (2107.09237v2)

Published 20 Jul 2021 in cs.CV

Abstract: Near infrared (NIR) imaging has been widely applied in low-light imaging scenarios; however, it is difficult for human and algorithms to perceive the real scene in the colorless NIR domain. While Generative Adversarial Network (GAN) has been widely employed in various image colorization tasks, it is challenging for a direct mapping mechanism, such as a conventional GAN, to transform an image from the NIR to the RGB domain with correct semantic reasoning, well-preserved textures, and vivid color combinations concurrently. In this work, we propose a novel Attention-based NIR image colorization framework via Adaptive Fusion of Semantic and Texture clues, aiming at achieving these goals within the same framework. The tasks of texture transfer and semantic reasoning are carried out in two separate network blocks. Specifically, the Texture Transfer Block (TTB) aims at extracting texture features from the NIR image's Laplacian component and transferring them for subsequent color fusion. The Semantic Reasoning Block (SRB) extracts semantic clues and maps the NIR pixel values to the RGB domain. Finally, a Fusion Attention Block (FAB) is proposed to adaptively fuse the features from the two branches and generate an optimized colorization result. In order to enhance the network's learning capacity in semantic reasoning as well as mapping precision in texture transfer, we have proposed the Residual Coordinate Attention Block (RCAB), which incorporates coordinate attention into a residual learning framework, enabling the network to capture long-range dependencies along the channel direction and meanwhile precise positional information can be preserved along spatial directions. RCAB is also incorporated into FAB to facilitate accurate texture alignment during fusion. Both quantitative and qualitative evaluations show that the proposed method outperforms state-of-the-art NIR image colorization methods.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.