Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Shared Interest: Measuring Human-AI Alignment to Identify Recurring Patterns in Model Behavior (2107.09234v2)

Published 20 Jul 2021 in cs.LG

Abstract: Saliency methods -- techniques to identify the importance of input features on a model's output -- are a common step in understanding neural network behavior. However, interpreting saliency requires tedious manual inspection to identify and aggregate patterns in model behavior, resulting in ad hoc or cherry-picked analysis. To address these concerns, we present Shared Interest: metrics for comparing model reasoning (via saliency) to human reasoning (via ground truth annotations). By providing quantitative descriptors, Shared Interest enables ranking, sorting, and aggregating inputs, thereby facilitating large-scale systematic analysis of model behavior. We use Shared Interest to identify eight recurring patterns in model behavior, such as cases where contextual features or a subset of ground truth features are most important to the model. Working with representative real-world users, we show how Shared Interest can be used to decide if a model is trustworthy, uncover issues missed in manual analyses, and enable interactive probing.

Citations (43)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.