Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Asymptotic Escape of Spurious Critical Points on the Low-rank Matrix Manifold (2107.09207v2)

Published 20 Jul 2021 in math.OC, cs.IT, cs.LG, math.IT, and stat.ML

Abstract: We show that on the manifold of fixed-rank and symmetric positive semi-definite matrices, the Riemannian gradient descent algorithm almost surely escapes some spurious critical points on the boundary of the manifold. Our result is the first to partially overcome the incompleteness of the low-rank matrix manifold without changing the vanilla Riemannian gradient descent algorithm. The spurious critical points are some rank-deficient matrices that capture only part of the eigen components of the ground truth. Unlike classical strict saddle points, they exhibit very singular behavior. We show that using the dynamical low-rank approximation and a rescaled gradient flow, some of the spurious critical points can be converted to classical strict saddle points in the parameterized domain, which leads to the desired result. Numerical experiments are provided to support our theoretical findings.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.