Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Token-Level Supervised Contrastive Learning for Punctuation Restoration (2107.09099v3)

Published 19 Jul 2021 in cs.CL and cs.LG

Abstract: Punctuation is critical in understanding natural language text. Currently, most automatic speech recognition (ASR) systems do not generate punctuation, which affects the performance of downstream tasks, such as intent detection and slot filling. This gives rise to the need for punctuation restoration. Recent work in punctuation restoration heavily utilizes pre-trained LLMs without considering data imbalance when predicting punctuation classes. In this work, we address this problem by proposing a token-level supervised contrastive learning method that aims at maximizing the distance of representation of different punctuation marks in the embedding space. The result shows that training with token-level supervised contrastive learning obtains up to 3.2% absolute F1 improvement on the test set.

Citations (23)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com