Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning (2107.08918v1)

Published 19 Jul 2021 in cs.CV

Abstract: Few-shot class-incremental learning is to recognize the new classes given few samples and not forget the old classes. It is a challenging task since representation optimization and prototype reorganization can only be achieved under little supervision. To address this problem, we propose a novel incremental prototype learning scheme. Our scheme consists of a random episode selection strategy that adapts the feature representation to various generated incremental episodes to enhance the corresponding extensibility, and a self-promoted prototype refinement mechanism which strengthens the expression ability of the new classes by explicitly considering the dependencies among different classes. Particularly, a dynamic relation projection module is proposed to calculate the relation matrix in a shared embedding space and leverage it as the factor for bootstrapping the update of prototypes. Extensive experiments on three benchmark datasets demonstrate the above-par incremental performance, outperforming state-of-the-art methods by a margin of 13%, 17% and 11%, respectively.

Citations (126)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.