Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Algorithms for hard-constraint point processes via discretization (2107.08848v2)

Published 19 Jul 2021 in cs.DS and math.PR

Abstract: We study algorithmic applications of a natural discretization for the hard-sphere model and the Widom-Rowlinson model in a region $\mathbb{V}\subset\mathbb{R}d$. These models are used in statistical physics to describe mixtures of one or multiple particle types subjected to hard-core interactions. For each type, particles follow a Poisson point process with a type specific activity parameter (fugacity). The Gibbs distribution is characterized by the mixture of these point processes conditioned that no two particles are closer than a type-dependent distance threshold. A key part in better understanding the Gibbs distribution is its normalizing constant, called partition function. We give sufficient conditions that the partition function of a discrete hard-core model on a geometric graph based on a point set $X \subset \mathbb{V}$ closely approximates those of such continuous models. Previously, this was only shown for the hard-sphere model on cubic regions $\mathbb{V}=[0, \ell)d$ when $X$ is exponential in the volume of the region $\nu(\mathbb{V})$, limiting algorithmic applications. In the same setting, our refined analysis only requires a quadratic number of points, which we argue to be tight. We use our improved discretization results to approximate the partition functions of the hard-sphere model and the Widom-Rowlinson efficiently in $\nu(\mathbb{V})$. For the hard-sphere model, we obtain the first quasi-polynomial deterministic approximation algorithm for the entire fugacity regime for which, so far, only randomized approximations are known. Furthermore, we simplify a recently introduced fully polynomial randomized approximation algorithm. Similarly, we obtain the best known deterministic and randomized approximation bounds for the Widom-Rowlinson model. Moreover, we obtain approximate sampling algorithms for the respective spin systems within the same fugacity regimes.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.