Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Unsupervised Skill-Discovery and Skill-Learning in Minecraft (2107.08398v1)

Published 18 Jul 2021 in cs.AI and cs.LG

Abstract: Pre-training Reinforcement Learning agents in a task-agnostic manner has shown promising results. However, previous works still struggle in learning and discovering meaningful skills in high-dimensional state-spaces, such as pixel-spaces. We approach the problem by leveraging unsupervised skill discovery and self-supervised learning of state representations. In our work, we learn a compact latent representation by making use of variational and contrastive techniques. We demonstrate that both enable RL agents to learn a set of basic navigation skills by maximizing an information theoretic objective. We assess our method in Minecraft 3D pixel maps with different complexities. Our results show that representations and conditioned policies learned from pixels are enough for toy examples, but do not scale to realistic and complex maps. To overcome these limitations, we explore alternative input observations such as the relative position of the agent along with the raw pixels.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.