Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A High-Performance Adaptive Quantization Approach for Edge CNN Applications (2107.08382v1)

Published 18 Jul 2021 in cs.CV and cs.LG

Abstract: Recent convolutional neural network (CNN) development continues to advance the state-of-the-art model accuracy for various applications. However, the enhanced accuracy comes at the cost of substantial memory bandwidth and storage requirements and demanding computational resources. Although in the past the quantization methods have effectively reduced the deployment cost for edge devices, it suffers from significant information loss when processing the biased activations of contemporary CNNs. In this paper, we hence introduce an adaptive high-performance quantization method to resolve the issue of biased activation by dynamically adjusting the scaling and shifting factors based on the task loss. Our proposed method has been extensively evaluated on image classification models (ResNet-18/34/50, MobileNet-V2, EfficientNet-B0) with ImageNet dataset, object detection model (YOLO-V4) with COCO dataset, and LLMs with PTB dataset. The results show that our 4-bit integer (INT4) quantization models achieve better accuracy than the state-of-the-art 4-bit models, and in some cases, even surpass the golden full-precision models. The final designs have been successfully deployed onto extremely resource-constrained edge devices for many practical applications.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.