Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A High-Performance Adaptive Quantization Approach for Edge CNN Applications (2107.08382v1)

Published 18 Jul 2021 in cs.CV and cs.LG

Abstract: Recent convolutional neural network (CNN) development continues to advance the state-of-the-art model accuracy for various applications. However, the enhanced accuracy comes at the cost of substantial memory bandwidth and storage requirements and demanding computational resources. Although in the past the quantization methods have effectively reduced the deployment cost for edge devices, it suffers from significant information loss when processing the biased activations of contemporary CNNs. In this paper, we hence introduce an adaptive high-performance quantization method to resolve the issue of biased activation by dynamically adjusting the scaling and shifting factors based on the task loss. Our proposed method has been extensively evaluated on image classification models (ResNet-18/34/50, MobileNet-V2, EfficientNet-B0) with ImageNet dataset, object detection model (YOLO-V4) with COCO dataset, and LLMs with PTB dataset. The results show that our 4-bit integer (INT4) quantization models achieve better accuracy than the state-of-the-art 4-bit models, and in some cases, even surpass the golden full-precision models. The final designs have been successfully deployed onto extremely resource-constrained edge devices for many practical applications.

Citations (4)

Summary

We haven't generated a summary for this paper yet.