Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 30 tok/s Pro
2000 character limit reached

Progressive Deep Video Dehazing without Explicit Alignment Estimation (2107.07837v1)

Published 16 Jul 2021 in cs.CV

Abstract: To solve the issue of video dehazing, there are two main tasks to attain: how to align adjacent frames to the reference frame; how to restore the reference frame. Some papers adopt explicit approaches (e.g., the Markov random field, optical flow, deformable convolution, 3D convolution) to align neighboring frames with the reference frame in feature space or image space, they then use various restoration methods to achieve the final dehazing results. In this paper, we propose a progressive alignment and restoration method for video dehazing. The alignment process aligns consecutive neighboring frames stage by stage without using the optical flow estimation. The restoration process is not only implemented under the alignment process but also uses a refinement network to improve the dehazing performance of the whole network. The proposed networks include four fusion networks and one refinement network. To decrease the parameters of networks, three fusion networks in the first fusion stage share the same parameters. Extensive experiments demonstrate that the proposed video dehazing method achieves outstanding performance against the-state-of-art methods.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube