Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semi-supervised 3D Hand-Object Pose Estimation via Pose Dictionary Learning (2107.07676v1)

Published 16 Jul 2021 in cs.CV

Abstract: 3D hand-object pose estimation is an important issue to understand the interaction between human and environment. Current hand-object pose estimation methods require detailed 3D labels, which are expensive and labor-intensive. To tackle the problem of data collection, we propose a semi-supervised 3D hand-object pose estimation method with two key techniques: pose dictionary learning and an object-oriented coordinate system. The proposed pose dictionary learning module can distinguish infeasible poses by reconstruction error, enabling unlabeled data to provide supervision signals. The proposed object-oriented coordinate system can make 3D estimations equivariant to the camera perspective. Experiments are conducted on FPHA and HO-3D datasets. Our method reduces estimation error by 19.5% / 24.9% for hands/objects compared to straightforward use of labeled data on FPHA and outperforms several baseline methods. Extensive experiments also validate the robustness of the proposed method.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Zida Cheng (6 papers)
  2. Siheng Chen (152 papers)
  3. Ya Zhang (223 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.