Linear Programming Bounds for Almost-Balanced Binary Codes (2107.07672v1)
Abstract: We revisit the linear programming bounds for the size vs. distance trade-off for binary codes, focusing on the bounds for the almost-balanced case, when all pairwise distances are between $d$ and $n-d$, where $d$ is the code distance and $n$ is the block length. We give an optimal solution to Delsarte's LP for the almost-balanced case with large distance $d \geq (n - \sqrt{n})/2 + 1$, which shows that the optimal value of the LP coincides with the Grey-Rankin bound for self-complementary codes. We also show that a limitation of the asymptotic LP bound shown by Samorodnitsky, namely that it is at least the average of the first MRRW upper bound and Gilbert-Varshamov bound, continues to hold for the almost-balanced case.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.