Papers
Topics
Authors
Recent
2000 character limit reached

Linear Programming Bounds for Almost-Balanced Binary Codes (2107.07672v1)

Published 16 Jul 2021 in cs.IT and math.IT

Abstract: We revisit the linear programming bounds for the size vs. distance trade-off for binary codes, focusing on the bounds for the almost-balanced case, when all pairwise distances are between $d$ and $n-d$, where $d$ is the code distance and $n$ is the block length. We give an optimal solution to Delsarte's LP for the almost-balanced case with large distance $d \geq (n - \sqrt{n})/2 + 1$, which shows that the optimal value of the LP coincides with the Grey-Rankin bound for self-complementary codes. We also show that a limitation of the asymptotic LP bound shown by Samorodnitsky, namely that it is at least the average of the first MRRW upper bound and Gilbert-Varshamov bound, continues to hold for the almost-balanced case.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.