Papers
Topics
Authors
Recent
2000 character limit reached

PC-MLP: Model-based Reinforcement Learning with Policy Cover Guided Exploration (2107.07410v1)

Published 15 Jul 2021 in cs.LG

Abstract: Model-based Reinforcement Learning (RL) is a popular learning paradigm due to its potential sample efficiency compared to model-free RL. However, existing empirical model-based RL approaches lack the ability to explore. This work studies a computationally and statistically efficient model-based algorithm for both Kernelized Nonlinear Regulators (KNR) and linear Markov Decision Processes (MDPs). For both models, our algorithm guarantees polynomial sample complexity and only uses access to a planning oracle. Experimentally, we first demonstrate the flexibility and efficacy of our algorithm on a set of exploration challenging control tasks where existing empirical model-based RL approaches completely fail. We then show that our approach retains excellent performance even in common dense reward control benchmarks that do not require heavy exploration. Finally, we demonstrate that our method can also perform reward-free exploration efficiently. Our code can be found at https://github.com/yudasong/PCMLP.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.