Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Unsupervised Anomaly Instance Segmentation for Baggage Threat Recognition (2107.07333v2)

Published 15 Jul 2021 in cs.CV and eess.IV

Abstract: Identifying potential threats concealed within the baggage is of prime concern for the security staff. Many researchers have developed frameworks that can detect baggage threats from X-ray scans. However, to the best of our knowledge, all of these frameworks require extensive training on large-scale and well-annotated datasets, which are hard to procure in the real world. This paper presents a novel unsupervised anomaly instance segmentation framework that recognizes baggage threats, in X-ray scans, as anomalies without requiring any ground truth labels. Furthermore, thanks to its stylization capacity, the framework is trained only once, and at the inference stage, it detects and extracts contraband items regardless of their scanner specifications. Our one-staged approach initially learns to reconstruct normal baggage content via an encoder-decoder network utilizing a proposed stylization loss function. The model subsequently identifies the abnormal regions by analyzing the disparities within the original and the reconstructed scans. The anomalous regions are then clustered and post-processed to fit a bounding box for their localization. In addition, an optional classifier can also be appended with the proposed framework to recognize the categories of these extracted anomalies. A thorough evaluation of the proposed system on four public baggage X-ray datasets, without any re-training, demonstrates that it achieves competitive performance as compared to the conventional fully supervised methods (i.e., the mean average precision score of 0.7941 on SIXray, 0.8591 on GDXray, 0.7483 on OPIXray, and 0.5439 on COMPASS-XP dataset) while outperforming state-of-the-art semi-supervised and unsupervised baggage threat detection frameworks by 67.37%, 32.32%, 47.19%, and 45.81% in terms of F1 score across SIXray, GDXray, OPIXray, and COMPASS-XP datasets, respectively.

Citations (29)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.