Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

StyleVideoGAN: A Temporal Generative Model using a Pretrained StyleGAN (2107.07224v2)

Published 15 Jul 2021 in cs.CV

Abstract: Generative adversarial models (GANs) continue to produce advances in terms of the visual quality of still images, as well as the learning of temporal correlations. However, few works manage to combine these two interesting capabilities for the synthesis of video content: Most methods require an extensive training dataset to learn temporal correlations, while being rather limited in the resolution and visual quality of their output. We present a novel approach to the video synthesis problem that helps to greatly improve visual quality and drastically reduce the amount of training data and resources necessary for generating videos. Our formulation separates the spatial domain, in which individual frames are synthesized, from the temporal domain, in which motion is generated. For the spatial domain we use a pre-trained StyleGAN network, the latent space of which allows control over the appearance of the objects it was trained for. The expressive power of this model allows us to embed our training videos in the StyleGAN latent space. Our temporal architecture is then trained not on sequences of RGB frames, but on sequences of StyleGAN latent codes. The advantageous properties of the StyleGAN space simplify the discovery of temporal correlations. We demonstrate that it suffices to train our temporal architecture on only 10 minutes of footage of 1 subject for about 6 hours. After training, our model can not only generate new portrait videos for the training subject, but also for any random subject which can be embedded in the StyleGAN space.

Citations (48)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.