Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Deep Learning based Food Instance Segmentation using Synthetic Data (2107.07191v2)

Published 15 Jul 2021 in cs.CV and cs.AI

Abstract: In the process of intelligently segmenting foods in images using deep neural networks for diet management, data collection and labeling for network training are very important but labor-intensive tasks. In order to solve the difficulties of data collection and annotations, this paper proposes a food segmentation method applicable to real-world through synthetic data. To perform food segmentation on healthcare robot systems, such as meal assistance robot arm, we generate synthetic data using the open-source 3D graphics software Blender placing multiple objects on meal plate and train Mask R-CNN for instance segmentation. Also, we build a data collection system and verify our segmentation model on real-world food data. As a result, on our real-world dataset, the model trained only synthetic data is available to segment food instances that are not trained with 52.2% mask AP@all, and improve performance by +6.4%p after fine-tuning comparing to the model trained from scratch. In addition, we also confirm the possibility and performance improvement on the public dataset for fair analysis. Our code and pre-trained weights are avaliable online at: https://github.com/gist-ailab/Food-Instance-Segmentation

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.