Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

DeceFL: A Principled Decentralized Federated Learning Framework (2107.07171v2)

Published 15 Jul 2021 in cs.LG, cs.DC, cs.SY, and eess.SY

Abstract: Traditional machine learning relies on a centralized data pipeline, i.e., data are provided to a central server for model training. In many applications, however, data are inherently fragmented. Such a decentralized nature of these databases presents the biggest challenge for collaboration: sending all decentralized datasets to a central server raises serious privacy concerns. Although there has been a joint effort in tackling such a critical issue by proposing privacy-preserving machine learning frameworks, such as federated learning, most state-of-the-art frameworks are built still in a centralized way, in which a central client is needed for collecting and distributing model information (instead of data itself) from every other client, leading to high communication pressure and high vulnerability when there exists a failure at or attack on the central client. Here we propose a principled decentralized federated learning algorithm (DeceFL), which does not require a central client and relies only on local information transmission between clients and their neighbors, representing a fully decentralized learning framework. It has been further proven that every client reaches the global minimum with zero performance gap and achieves the same convergence rate $O(1/T)$ (where $T$ is the number of iterations in gradient descent) as centralized federated learning when the loss function is smooth and strongly convex. Finally, the proposed algorithm has been applied to a number of applications to illustrate its effectiveness for both convex and nonconvex loss functions, demonstrating its applicability to a wide range of real-world medical and industrial applications.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.