Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

WeightScale: Interpreting Weight Change in Neural Networks (2107.07005v2)

Published 7 Jul 2021 in cs.LG and cs.AI

Abstract: Interpreting the learning dynamics of neural networks can provide useful insights into how networks learn and the development of better training and design approaches. We present an approach to interpret learning in neural networks by measuring relative weight change on a per layer basis and dynamically aggregating emerging trends through combination of dimensionality reduction and clustering which allows us to scale to very deep networks. We use this approach to investigate learning in the context of vision tasks across a variety of state-of-the-art networks and provide insights into the learning behavior of these networks, including how task complexity affects layer-wise learning in deeper layers of networks.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.