Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Counting list homomorphisms from graphs of bounded treewidth: tight complexity bounds (2107.06889v2)

Published 14 Jul 2021 in cs.CC and cs.DS

Abstract: The goal of this work is to give precise bounds on the counting complexity of a family of generalized coloring problems (list homomorphisms) on bounded-treewidth graphs. Given graphs $G$, $H$, and lists $L(v)\subseteq V(H)$ for every $v\in V(G)$, a {\em list homomorphism} is a function $f:V(G)\to V(H)$ that preserves the edges (i.e., $uv\in E(G)$ implies $f(u)f(v)\in E(H)$) and respects the lists (i.e., $f(v)\in L(v))$. Standard techniques show that if $G$ is given with a tree decomposition of width $t$, then the number of list homomorphisms can be counted in time $|V(H)|t\cdot n{\mathcal{O}(1)}$. Our main result is determining, for every fixed graph $H$, how much the base $|V(H)|$ in the running time can be improved. For a connected graph $H$ we define $\operatorname{irr}(H)$ the following way: if $H$ has a loop or is nonbipartite, then $\operatorname{irr}(H)$ is the maximum size of a set $S\subseteq V(H)$ where any two vertices have different neighborhoods; if $H$ is bipartite, then $\operatorname{irr}(H)$ is the maximum size of such a set that is fully in one of the bipartition classes. For disconnected $H$, we define $\operatorname{irr}(H)$ as the maximum of $\operatorname{irr}(C)$ over every connected component $C$ of $H$. We show that, for every fixed graph $H$, the number of list homomorphisms from $(G,L)$ to $H$ * can be counted in time $\operatorname{irr}(H)t\cdot n{\mathcal{O}(1)}$ if a tree decomposition of $G$ having width at most $t$ is given in the input, and * cannot be counted in time $(\operatorname{irr}(H)-\epsilon)t\cdot n{\mathcal{O}(1)}$ for any $\epsilon>0$, even if a tree decomposition of $G$ having width at most $t$ is given in the input, unless the #SETH fails. Thereby we give a precise and complete complexity classification featuring matching upper and lower bounds for all target graphs with or without loops.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.