Papers
Topics
Authors
Recent
Search
2000 character limit reached

Efficient Approximate Search for Sets of Vectors

Published 14 Jul 2021 in cs.DS, cs.AI, and cs.DB | (2107.06817v2)

Abstract: We consider a similarity measure between two sets $A$ and $B$ of vectors, that balances the average and maximum cosine distance between pairs of vectors, one from set $A$ and one from set $B$. As a motivation for this measure, we present lineage tracking in a database. To practically realize this measure, we need an approximate search algorithm that given a set of vectors $A$ and sets of vectors $B_1,...,B_n$, the algorithm quickly locates the set $B_i$ that maximizes the similarity measure. For the case where all sets are singleton sets, essentially each is a single vector, there are known efficient approximate search algorithms, e.g., approximated versions of tree search algorithms, locality-sensitive hashing (LSH), vector quantization (VQ) and proximity graph algorithms. In this work, we present approximate search algorithms for the general case. The underlying idea in these algorithms is encoding a set of vectors via a "long" single vector. The proposed approximate approach achieves significant performance gains over an optimized, exact search on vector sets.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.