Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Optimality of the Johnson-Lindenstrauss Dimensionality Reduction for Practical Measures (2107.06626v2)

Published 14 Jul 2021 in cs.DS, cs.CG, and cs.LG

Abstract: It is well known that the Johnson-Lindenstrauss dimensionality reduction method is optimal for worst case distortion. While in practice many other methods and heuristics are used, not much is known in terms of bounds on their performance. The question of whether the JL method is optimal for practical measures of distortion was recently raised in BFN19 (NeurIPS'19). They provided upper bounds on its quality for a wide range of practical measures and showed that indeed these are best possible in many cases. Yet, some of the most important cases, including the fundamental case of average distortion were left open. In particular, they show that the JL transform has $1+\epsilon$ average distortion for embedding into $k$-dimensional Euclidean space, where $k=O(1/\epsilon2)$, and for more general $q$-norms of distortion, $k = O(\max{1/\epsilon2,q/\epsilon})$, whereas tight lower bounds were established only for large values of $q$ via reduction to the worst case. In this paper we prove that these bounds are best possible for any dimensionality reduction method, for any $1 \leq q \leq O(\frac{\log (2\epsilon2 n)}{\epsilon})$ and $\epsilon \geq \frac{1}{\sqrt{n}}$, where $n$ is the size of the subset of Euclidean space. Our results imply that the JL method is optimal for various distortion measures commonly used in practice such as stress, energy and relative error. We prove that if any of these measures is bounded by $\epsilon$ then $k=\Omega(1/\epsilon2)$ for any $\epsilon \geq \frac{1}{\sqrt{n}}$, matching the upper bounds of BFN19 and extending their tightness results for the full range moment analysis. Our results may indicate that the JL dimensionality reduction method should be considered more often in practical applications, and the bounds we provide for its quality should be served as a measure for comparison when evaluating the performance of other methods and heuristics.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.