Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

MESS: Manifold Embedding Motivated Super Sampling (2107.06566v1)

Published 14 Jul 2021 in cs.LG, cs.AI, and stat.ML

Abstract: Many approaches in the field of machine learning and data analysis rely on the assumption that the observed data lies on lower-dimensional manifolds. This assumption has been verified empirically for many real data sets. To make use of this manifold assumption one generally requires the manifold to be locally sampled to a certain density such that features of the manifold can be observed. However, for increasing intrinsic dimensionality of a data set the required data density introduces the need for very large data sets, resulting in one of the many faces of the curse of dimensionality. To combat the increased requirement for local data density we propose a framework to generate virtual data points that faithful to an approximate embedding function underlying the manifold observable in the data.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.