Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Theoretical Framework for Learning from Quantum Data (2107.06406v1)

Published 13 Jul 2021 in quant-ph, cs.DS, cs.IT, and math.IT

Abstract: Over decades traditional information theory of source and channel coding advances toward learning and effective extraction of information from data. We propose to go one step further and offer a theoretical foundation for learning classical patterns from quantum data. However, there are several roadblocks to lay the groundwork for such a generalization. First, classical data must be replaced by a density operator over a Hilbert space. Hence, deviated from problems such as state tomography, our samples are i.i.d density operators. The second challenge is even more profound since we must realize that our only interaction with a quantum state is through a measurement which -- due to no-cloning quantum postulate -- loses information after measuring it. With this in mind, we present a quantum counterpart of the well-known PAC framework. Based on that, we propose a quantum analogous of the ERM algorithm for learning measurement hypothesis classes. Then, we establish upper bounds on the quantum sample complexity quantum concept classes.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.