Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Theoretical Framework for Learning from Quantum Data (2107.06406v1)

Published 13 Jul 2021 in quant-ph, cs.DS, cs.IT, and math.IT

Abstract: Over decades traditional information theory of source and channel coding advances toward learning and effective extraction of information from data. We propose to go one step further and offer a theoretical foundation for learning classical patterns from quantum data. However, there are several roadblocks to lay the groundwork for such a generalization. First, classical data must be replaced by a density operator over a Hilbert space. Hence, deviated from problems such as state tomography, our samples are i.i.d density operators. The second challenge is even more profound since we must realize that our only interaction with a quantum state is through a measurement which -- due to no-cloning quantum postulate -- loses information after measuring it. With this in mind, we present a quantum counterpart of the well-known PAC framework. Based on that, we propose a quantum analogous of the ERM algorithm for learning measurement hypothesis classes. Then, we establish upper bounds on the quantum sample complexity quantum concept classes.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube