Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Learning Aesthetic Layouts via Visual Guidance (2107.06262v1)

Published 13 Jul 2021 in cs.CV, cs.GR, and cs.MM

Abstract: We explore computational approaches for visual guidance to aid in creating aesthetically pleasing art and graphic design. Our work complements and builds on previous work that developed models for how humans look at images. Our approach comprises three steps. First, we collected a dataset of art masterpieces and labeled the visual fixations with state-of-art vision models. Second, we clustered the visual guidance templates of the art masterpieces with unsupervised learning. Third, we developed a pipeline using generative adversarial networks to learn the principles of visual guidance and that can produce aesthetically pleasing layouts. We show that the aesthetic visual guidance principles can be learned and integrated into a high-dimensional model and can be queried by the features of graphic elements. We evaluate our approach by generating layouts on various drawings and graphic designs. Moreover, our model considers the color and structure of graphic elements when generating layouts. Consequently, we believe our tool, which generates multiple aesthetic layout options in seconds, can help artists create beautiful art and graphic designs.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.