Papers
Topics
Authors
Recent
2000 character limit reached

Maintaining $\mathsf{CMSO}_2$ properties on dynamic structures with bounded feedback vertex number (2107.06232v2)

Published 13 Jul 2021 in cs.DS, cs.DM, and cs.LO

Abstract: Let $\varphi$ be a sentence of $\mathsf{CMSO}2$ (monadic second-order logic with quantification over edge subsets and counting modular predicates) over the signature of graphs. We present a dynamic data structure that for a given graph $G$ that is updated by edge insertions and edge deletions, maintains whether $\varphi$ is satisfied in $G$. The data structure is required to correctly report the outcome only when the feedback vertex number of $G$ does not exceed a fixed constant $k$, otherwise it reports that the feedback vertex number is too large. With this assumption, we guarantee amortized update time ${\cal O}{\varphi,k}(\log n)$. If we additionally assume that the feedback vertex number of $G$ never exceeds $k$, this update time guarantee is worst-case. By combining this result with a classic theorem of Erd\H{o}s and P\'osa, we give a fully dynamic data structure that maintains whether a graph contains a packing of $k$ vertex-disjoint cycles with amortized update time ${\cal O}_{k}(\log n)$. Our data structure also works in a larger generality of relational structures over binary signatures.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.