Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Multistage Mixed Precision Iterative Refinement (2107.06200v2)

Published 13 Jul 2021 in math.NA and cs.NA

Abstract: Low precision arithmetic, in particular half precision floating point arithmetic, is now available in commercial hardware. Using lower precision can offer significant savings in computation and communication costs with proportional savings in energy. Motivated by this, there has been a renewed interest in mixed precision iterative refinement for solving linear systems $Ax=b$, and new variants of GMRES-based iterative refinement have been developed. Each particular variant with a given combination of precisions leads to different condition number-based constraints for convergence of the backward and forward errors, and each has different performance costs. The constraints for convergence given in the literature are, as an artifact of the analyses, often overly strict in practice, and thus could lead a user to select a more expensive variant when a less expensive one would have sufficed. In this work, we develop a multistage mixed precision iterative refinement solver which aims to combine existing mixed precision approaches to balance performance and accuracy and improve usability. For an initial combination of precisions, the algorithm begins with the least expensive approach and convergence is monitored via inexpensive computations with quantities produced during the iteration. If slow convergence or divergence is detected using particular stopping criteria, the algorithm switches to use a more expensive, but more reliable variant. A novel aspect of our approach is that, unlike existing implementations, our algorithm first attempts to use ``stronger'' solvers for the solution update before resorting to increasing the precision(s). In some scenarios, this can avoid the need to refactorize the matrix in higher precision. We perform extensive numerical experiments on random dense problems and problems from real applications which confirm the benefits of the multistage approach.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)