Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 135 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Adaptive dynamic programming-based adaptive-gain sliding mode tracking control for fixed-wing UAV with disturbances (2107.06151v1)

Published 13 Jul 2021 in eess.SY and cs.SY

Abstract: This paper proposes an adaptive dynamic programming-based adaptive-gain sliding mode control (ADP-ASMC) scheme for a fixed-wing unmanned aerial vehicle (UAV) with matched and unmatched disturbances. Starting from the dynamic of fixed-wing UAV, the control-oriented model composed of attitude subsystem and airspeed subsystem is established. According to the different issues in two subsystems, two novel adaptive-gain generalized super-twisting (AGST) algorithms are developed to eliminate the effects of disturbances in two subsystems and make the system trajectories tend to the designed integral sliding manifolds (ISMs) in finite time. Then, based on the expected equivalent sliding-mode dynamics, the modified adaptive dynamic programming (ADP) approach with actor-critic (AC) structure is utilized to generate the nearly optimal control laws and achieve the nearly optimal performance of the sliding-mode dynamics. Furthermore, through the Lyapunov stability theorem, the tracking errors and the weight estimation errors of two neural networks (NNs) are all uniformly ultimately bounded (UUB). Finally, comparative simulations demonstrate the superior performance of the proposed control scheme for the fixed-wing UAV.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.