Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Reed Solomon Codes Against Adversarial Insertions and Deletions (2107.05699v3)

Published 12 Jul 2021 in cs.IT and math.IT

Abstract: In this work, we study the performance of Reed--Solomon codes against adversarial insertion-deletion (insdel) errors. We prove that over fields of size $n{O(k)}$ there are $[n,k]$ Reed-Solomon codes that can decode from $n-2k+1$ insdel errors and hence attain the half-Singleton bound. We also give a deterministic construction of such codes over much larger fields (of size $n{k{O(k)}}$). Nevertheless, for $k=O(\log n /\log\log n)$ our construction runs in polynomial time. For the special case $k=2$, which received a lot of attention in the literature, we construct an $[n,2]$ Reed-Solomon code over a field of size $O(n4)$ that can decode from $n-3$ insdel errors. Earlier constructions required an exponential field size. Lastly, we prove that any such construction requires a field of size $\Omega(n3)$.

Citations (13)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.