Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Structured Latent Embeddings for Recognizing Unseen Classes in Unseen Domains (2107.05622v1)

Published 12 Jul 2021 in cs.CV

Abstract: The need to address the scarcity of task-specific annotated data has resulted in concerted efforts in recent years for specific settings such as zero-shot learning (ZSL) and domain generalization (DG), to separately address the issues of semantic shift and domain shift, respectively. However, real-world applications often do not have constrained settings and necessitate handling unseen classes in unseen domains -- a setting called Zero-shot Domain Generalization, which presents the issues of domain and semantic shifts simultaneously. In this work, we propose a novel approach that learns domain-agnostic structured latent embeddings by projecting images from different domains as well as class-specific semantic text-based representations to a common latent space. In particular, our method jointly strives for the following objectives: (i) aligning the multimodal cues from visual and text-based semantic concepts; (ii) partitioning the common latent space according to the domain-agnostic class-level semantic concepts; and (iii) learning a domain invariance w.r.t the visual-semantic joint distribution for generalizing to unseen classes in unseen domains. Our experiments on the challenging DomainNet and DomainNet-LS benchmarks show the superiority of our approach over existing methods, with significant gains on difficult domains like quickdraw and sketch.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.